Chemical Engineering : Process Modelling - Process Control - Electrochemistry - Fire Safety Engineering - Waste Water Treatment

Chemical Engineering : Process Modelling - Process Control - Electrochemistry - Fire Safety Engineering - Waste Water Treatment

TinjauanSingkat Mengenai Pengamanan Kebakaran di Industri Kimia

TinjauanSingkat Mengenai Pengamanan Kebakaran di Industri Kimia

 

Sudibyo2, Sugeng P.1

Jurusan Teknik Mesin

Universitas Negeri Jakarta (UNJ) - Indonesia

School of Chemical Engineering, Universiti Sains Malaysia

Engineering campus, 14300 Nibong Tebal, Seberang Perai Selatan, PulauPinang, Malaysia

*Phone: +60165651468, Email: yoyo_tekim@yahoo.com

 

Abstrak

Industrikimia biasanya menggunakan bahan mudah terbakar yang diproses pada suhu dantekanan tinggi. Kondisi ini menyebabkan resiko kebakaran yang tinggi. Dalam industri kimia, kebanyakan kematian akibatkebakaran disebabkan oleh ledakan dan menghisap asap beracun yang dihasilkansaat kebakaran terjadi. Oleh karena itu, perlu meningkatkan pengamanankebakaran dalam industri kimia. Artikel ini mengulas strategi dalampenanggulangan resiko kebakaran yang diusulkan oleh organisasi-organisasi yangberhubungan dengan masalah pengamanan kebakaran.

 Kata kunci: pengamanan kebakaran, bahaya kimia,toksisitas asap, pabrik kimia

 Pendahuluan

Industri kimia berhubungandengan bahan bahan berbahaya dari jenis organik maupun anorganik. Bahan-bahankimia organik pada umumnya adalah mudah terbakar, bahkan banyak diantaranyayang mudah meledak dan bias terbakar sendiri khususnya jika disimpan dalamkondisi tertentu atau jika bereaksi dengan bahan kimia tertentu. Sedangkanbahan bahan an organic umumnya tidak mudah terbakar akan tetapi ada juga yangmudah meledak  dan zat pengoksidasi. Dalam artikel ini akan dilaskan beberapametode mencegah kebakaran di pabrik kimia yang terdiri dari:

-         konstruksi bangunan harus tahanapi (fireproof) dan layak

-         Proses yangberbahaya di isolasi dalam area khusus

-         Proses yangberbahaya dijalankan sesuai prosedur yang benar

-         Semua kondisi yangmembahayakan proses dihilangkan

-         Tersedia alat pemadamkebakaran yang layak ditempat tersebut

-         Meningkatkansystem pengamanan kebakaran.

 

 

 

 

Ringkasan

Setiap tahun, banyakpekerja meninggal dan terluka dalam kebakaran pabrik kimia selain itu kerugianmaterial dialami pabrik-pabrik kimia. Untuk mengatasi hal ini diperlukan usahauntuk meningkatkan pengamanan terhadap kebakaran. Melalui perencanaan dan usahayang sungguh-sungguh maka resiko kebakaran akan dapat dikurangi.

 

Daftar Pustaka

Aninomous. OccupationalHealth and Safety Manual for the Garment Sector in Cambodia. Chapter 9. 11-24

 

Bernard f. F. 1935. Fire preventionand protection in chemical industries. Industrial and engineering chemistry27. (11), 1305

 

George V.H., Noureddine B.1999.Performancecriteria used in fire safety design. Automation in Construction (8) 489–501

 

Hartzell, G. E. 2001.Engineeringanalysis of hazards to life safety in fires : the fire effluent toxicitycomponent. Safety science (38), 147-155

 

Magnuson, S. E. 1995. A proposalfor a model curriculum in fire safety engineering. Fire Safety Journal.

 

 

Semi-empirical Equation of Limiting Current for Cobalt Magnetoelectrodeposition in the Presence Additive Elctrolyte

Semi-empirical Equation of Limiting Current for Cobalt Magnetoelectrodeposition in the Presence Additive Elctrolyte

 

Sudibyo1, A. B. Ismail2 and N. Aziz1*

 

1School of Chemical Engineering, Universiti SainsMalaysia

2School of Materials and Mineral Resources Engineering,Universiti Sains Malaysia

Engineering campus, 14300 Nibong Tebal, Seberang PeraiSelatan, Pulau Pinang, Malaysia

*Corresponding author, Tel: +604 5996457; Fax: +6045941013; e-mail: chnaziz@eng.usm.my

 

Abstract

One of the methods availableto solve a roughening problem in electrodeposition is magnetoelectrodeposition(MED). This work is coined to focus on the limiting current under a magneticfield effects (MFE) on an electrodeposition of cobalt in the presence boricacid as additives electrolyte. The limiting current isvery important because it will affect the optimum mass transport achieved inthe elecrodeposition process. Here, the MFEon limiting current electrodeposition are investigated in terms of variationsin the electrode area (A), the concentration of the electro active species (C), the diffusion coefficient of theelectroactive species (D), thekinematic viscosity of the electrolyte (v),magnetic strength (B) and the number ofelectrons involved in the redox process (n). We concluded thatthe semi–empirical equation of limiting current under a magnetic field forcobalt MED is: 

iB =K C1.297A0.748Dv-0.664B0.336n1.385, where K is6.7 × 107 mA mol-1.297cm1.252S-0.664T-0.336s.

 Keywords: magnetoelectrodeposition; semi–empiricalequation; limiting current; additive; cobalt electrodeposition

 

Plate 1: Experimental setupfor development of semi-empirical equation of iB

 

 

Plate 2: Three-electrodeelectrochemical cell in cavity of electromagnet poles

 

Acknowledgment

 

Financial supports from Ministry of HigherEducation Malaysia through FRGS grant No. 607113 is greatly acknowledged.

 

References:

1.      KrauseA, Uhlemann M, Gebert A, L. Schultz L (2004) Electrochim Acta 49:4127

2.      Santos JS, Matos R, Trivinho-Strixino F,Pereira EC (2007) Electrochim Acta 53: 644

3.      Matsushima JT, Trivinho-Strixino F,Pereira EC (2006) Electrochim Acta 51: 1960

4.      Nakano H, Nakahara K, Kawano S, Oue S, Akiyama T and Fukushima H ,( 2002) J  Appl  

          electrochem  32: 43

5.      Ackland GJ, Tweedie ES (2007) Microscopicmodel of diffusion limited aggregation and

         electrodeposition in the presence oflevelling molecules. School of Physics, the University of

          Edinburgh, Scotland

6.      Ni Mhiochain TR, Hinds G, Martin A, ChangE, Lai A, Costiner L, Coey JMD (2004) Electrochim

         Acta 49: 4813

7.      Bund A, Koehler S, Kuehnlein HH, Plieth W(2003) Electrochim Acta 49: 147

8.     Mogi I, Kamiko M(1996) J Cryst Growth 166: 276

9.     MogiI, (1996) Physica B 216: 396

10.    Coey JMD, Hinds G (2001) J Alloys Compd 326: 238

11.    Fahidy TZ (2001) Prog Surf Sci 68: 155

12.    Nikolai SP,Polina MS, Inoue M (2004) J Magn Magn Mater 272: 2448

13.    Mansur Filho JC, Silva AG, Carvalho ATG,Martins ML (2005) Physica A 350: 393

14.    Legeai S, Chatelut M, Vittori O, Chopart JP,Aaboubi O (2004)  Electrochim Acta 50: 51

15.    Mollet L,Dumargue P, Daguenet P, Bodiot D (1974) Electrochim Acta 19: 841

16.    Aogaki R,Fueki K, Mukaibo T (1976) Denki Kagaku 44: 89

17.    Chopart JP,Douglade J, Fricoteaux P, Olivier A (1991) Electrochim Acta 36: 459

18.    Aaboubi O,Chopart JP, Olivier A, Gabrielli C, Tribollet B (1990) J. Electrochem. Soc.137: 1796

19.    Leventis N,Chen M, Gao X, Canalas M, Zhang P (1998) J Phys Chem B 102: 3512

20.    Leventis N,Gao X (1999) J Phys Chem B 103: 5832

21.    Aaboubi O,Los P, Amblard J, Chopart JP, Olivier A (2002) Energy Convers Manage 43: 37

22.    FricoteauxP, Jonvel B, Chopart JP (2003) J Phys Chem B 107: 9459.

23.    Legeai S,Chatelut M, Vittori O, Chopart JP, Aaboubi O (2004) Electrochim Acta 50: 51

24.    Rabah KL,Chopart JP, Schoelrb H, Saulnier S, Aaboubi O, Uhlemann M, Elmi D, Amblard

          J(2004) J Electroanal Chem 571:  85

25.   Sudibyo, Ismail AB, Uzir MH, Idris MN,Aziz N (2009) J REINTEK 4: 80

26.    Hinds G, Spada FE, Coey JMD, Ni Mhiocha´inTR, Lyons MEG (2001)  J Phys Chem B 105: 9847

27.    James AM(1984) Electrochemistry Dictionary. John Wiley & Sons, New York

 

 

Fundamental Study of Magnetic Field Effects on Electrodeposition of Copper

Fundamental Study of Magnetic Field Effects on Electrodeposition of Copper 

Sudibyo , M.B. How, N. I. Basir and N. Aziz

School of Chemical Engineering, EngineeringCampus, Universiti Sains Malaysia

14300 Nibong Tebal, Seberang PeraiSelatan,  Pulau Pinang, Malaysia

*Corresponding author. Phone : +6(04)59966457, Fax. +6(04) 5941013, Email: chnaziz@eng.usm.my

 

Abstract

 

The control of surface microstructure of transitionmetal thin film has both scientific and technological importance. Electrodepositionis one of convenient techniques that can control the surface morphology and thecrystal orientation of thin metal films. Electrodeposition is used to improvecontact resistance, reflection properties of material and to impart frictionproperties. It is also used to impart corrosion resistance or particulardesired physical or mechanical properties on the surface metal. Obtaining auniform, dense and compact deposition is one of the major problem inelectrodeposition. There are numerous studies that had been carried out toreduce it. One of methods available to overcome this problem ismagnetoelectrodeposition (MED). MED plays a vital role in electrodepositionprocess to synthesize metal alloy, thin film, multilayer, nanowires, multilayernanowires, dot array and nanocontacts which are the technology of the future tobuild the next generation of computing devices. As this technology is notwidely being investigated, this work is to focus on the fundamental study ofthe magnetic field effects on electrodeposition. Copper were chosen as the makeup material for the anode and cathode forthe electrodeposition unit. The effects of magnetic fields on copperelectrodeposition are investigated in terms of variations in the magnetic fieldstrength, the voltage potential, the electrolyte concentration and the magneticfield alignment. The experiments are conducted in a simple electrodepositionunit consisting of a central cathode and a circular anode ring. The magneticfield is introduced externally. Based on the experimental results, the merepresence of magnetic field would results in a compact deposit. As the magneticfield strength is increased, the deposit grows denser. The increment inelectrical potential and concentration also leads to the increase the depositedsize. Different compact deposited metal structures are observed when there arevariations in the magnetic field alignments. Finally, the optimum conditions ofthe magnetic electrodeposition of copper are proposed based on the experimentalresults.

 

Keywords: copper deposition, fractal, magnetic field, magnetoelectrodeposition,electrodeposition

 

Fig. 1: ExperimentalSetup to investigate growth fractalunder MFE

 

 

 

 

Fig. 2: Copperelectrodeposits (applied voltage 6 V, CuSO4 0.2 M, time duration 20minutes) : (a) without magnet, ( b) in weak magnetic field (ferrite magnet),(c) in strong magnetic field ( neodium magnet)

 

 Acknowledgment.

 This work was supported by FRGS under grant  No. 607113, Malaysia.

 References

 (1)     J.T.Matsushima et al. Investigation of cobaltdeposition using the electrochemical quartz crystal microbalance, Electrochimica Acta 51 (2006) 1960–1966

(2)    Mogi, I., Kamiko, M. (1996). Strikingeffects of magnetic field on the growth morphology of electrochemical deposits. Journal of Crystal Growth 166, pp 276-280.

(3)    Mhiochain, T.R.N., Hinds, G., Martin, A., Chang Z.Y.E., Lai, A.,Costiner, I., Coey, J.M.D. (2004). Influenceof magnetic field and gravity on the morphology of zinc fractalelectrodeposits. Electrochimica  Acta 49, pp 4813-4828.

(4)    Coey, J.M.D., Hinds, G. (2001). MagneticElectrodeposition. Journal of Alloys andCompounds 326, pp 238-245.

(5)    Thefreedictionary. DiffusionLimited Aggregation, http://encyclopedia.thefreedictionary.com/Diffusion+Limited+Aggregation(accessed November, 2005).

(6)     Halsey, C.T. (2001). Diffusion-Limited Aggregation: A Model for Pattern Formation, http://www.aip.org/pt/vol-53/iss-11/p36.html(accessed November, 2005).

(7)    Ganes, V., Vijayaraghavan, D., Lakshminarayanan, V. (2005). Fine graingrowth of nickel electrodeposit: Effect of applied magnetic filed duringdeposition. Applied Surface Science 240,pp 286-295.

(8)    Nikolic, N.D., Wang, H., Cheng, H., Guerrero, C.A.,Garcia, N. (2004). Influence of the magnetic field and magnetoresistance on theelectrodeposition of Ni nanocontacts in thin films and microwires. Journal of Magnetism and Magnetic Materials272-276, pp 2436-2438.

(9)     Bund,A., Koehler, S., Kuehnlein, H.H., Plieth, W. (2003). Magnetic field effects inelectrochemical reactions. ElectrochimicaActa 49, pp 147-152.

 

 

Semi-empirical Equation of Limiting Current for Tin Magnetoelectrodeposition in the Presence Additive Elctrolyte

Semi-empirical Equation of Limiting Current for Tin Magnetoelectrodeposition in the Presence Additive Elctrolyte  

 

Sudibyo1, A. B. Ismail2, and N. Aziz1*

 

1School of Chemical Engineering, Universiti Sains Malaysia

2School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia

Engineering campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia

*Phone: +6(04)599 6457 Fax. +6(04) 5941013, Email: chnaziz@eng.usm.my

 

Abstract

Tinmagnetoelectrodeposition (MED) is one of methods that can obtain moreuniform and compact structure of tin elctrodeposits. This newtechnology on tin electropositions process can be an alternativeprocess to produce nanomaterials and new generations of electronicsdevice. Measuring the limiting current is important in order to knowMFE on the mass transport phenomena of electrodeposition process. MFEon tin electrodeposition were investigated in terms of variations inthe effect of magnetic strength (B), the electrode area (A), theconcentration of the electro active species (C), the diffusioncoefficient of the electro active species (D), and the kinematicviscosity of the electrolyte (v) and the number of electrons of theredox process (n). MFE with flux density up to 0.3 T on tinelectrodeposition from sulphate electrolyte has been investigated. Weconcluded that the limiting current under magnetic field on tinelectrodepositing, iB = K C1.272A0.746 Dv-0.67B0.334n1.382 where K is

3.07 × 107  mA mol-1.272cm1.254S-0.67T-0.334s.

 

Keywords: Tin deposition; Magnetoelectrodeposition; Limiting current; semi-empirical equation, additive electrolyte

 

 

 Plate 1: Experimental setup for development of semi-empirical equation of iB

 

 

Plate 2: Three-electrode electrochemical cell in cavity of electromagnet poles

 

 

Acknowledgment

Financial supports from Ministry of Higher Education Malaysia through FRGS grant No. 607113 is greatly acknowledged.

 

References:

 

1.    J. Torrent-Burgues, E. Guaus, F. Sanz, J. Appl Electrochem., 32, 225 (2002).

2.    T.R. Ni Mhiochain, G. Hinds, A. Martin, E. Chang, A. Lai, L. Costiner,J.M.D Coey Electrochim. Acta, 49, 4813 (2004).

3.    Matsushima, J.T., Trivinho-Strixino, F., Pereira, E.C., Electrochim. Acta, 51, 1960 (2006).

4.    A. Bund, S Koehler, H. H. Kuehnlein, W. Plieth, Electrochim. Acta, 49, 147 (2003).

5.    T.R. Ni Mhiochain, G. Hinds, A. Martin, E. Chang, A. Lai, L. Costiner, J.M.D. Coey, Electrochim Acta 49, 4813 (2004).

6.    S. Legeai, M. Chatelut, O. Vittori, J.P. Chopart, O. Aaboubi, Electrochim. Acta, 50, 51(2004).

7.    L. Mollet, P. Dumargue, P. Daguenet, D. Bodiot, Electrochim. Acta 19, 841 (1974).

8.    R. Aogaki, K. Fueki, T. Mukaibo, Denki Kagaku, 44, 89 (1976).

9.    J.P. Chopart, J. Douglade, P. Fricoteaux, A. Olivier, Electrochim Acta, 36, 459 (1991).

10.  O.Aaboubi, J.P. Chopart, A. Olivier, C. Gabrielli, B. Tribollet, J. Electrochem. Soc., 137, 1796 (1990).

11.  N. Leventis, M. Chen, X. Gao, M. Canalas, P. Zhang, J. Phys. Chem B., 102, 3512 (1998).

12.  N. Leventis, X. Gao, J. Phys. Chem. B, 103, 5832, (1999).

13.  O. Aaboubi, P. Los, J. Amblard, J. P. Chopart, A. Olivier. Energy Convers. Manage., 43, 37  (2002).

14.  P. Fricoteaux, B. Jonvel, J. P. Chopart, J. Phys. Chem. B, 107, 9459 (2003).

15.  S. Legeai, M. Chatelut, O. Vittori, J. P. Chopart, O. Aaboubi, Electrochim. Acta, 50, 51  (2004).

16.  K. L. Rabah, J. P. Chopart, H. Schoelrb, S. Saulnier, O. Aaboubi, M. Uhlemann, D. Elmi, J. Amblard, J. Electroanal. Chem., 571,  85 (2004).

17. Sudibyo, A. B. Ismail, M. H. Uzir, M. N. Idris, N. Aziz , J. REINTEK, 4, 80 (2009).

18.  G. Hinds, F. E. Spada, J. M. D. Coey, T. R. Ni Mhiocha´in, M. E. G. Lyons,  J. Phys. Chem. B, 105, 9847 (2001).

19. I. Mogi, M. Kamiko, J Cryst Growth, 166, 276  (1996).

20. I. Mogi, Physica B, 216, 396 (1996).

21.  J. M. D. Coey, G. Hinds, J. Alloys Compd., 326, 238 (2001).

22.  T. Z. Fahidy, Prog. Surf. Sci. 68, 155 (2001).

23. S. P. Nikolai, M. S. Polina, M. Inoue, J. Magn. Magn. Mater., 272, 2448 (2004).

24.       J. C. Mansur Filho, A. G. Silva, A. T. G. Carvalho, M. L. Martins, Physica A, 350, 393  (2005).

25.  A. M. James, Electrochemistry Dictionary, John Wiley & Sons, New York (1984).

 

 

Recent Videos

70 views - 0 comments
49 views - 0 comments
62 views - 0 comments