Chemical Engineering : Process Modelling - Process Control - Electrochemistry - Fire Safety Engineering - Waste Water Treatment

Chemical Engineering : Process Modelling - Process Control - Electrochemistry - Fire Safety Engineering - Waste Water Treatment

Semi-empirical Equation of Limiting Current for CobaltMagnetoelectrodeposition in the Presence Additive Elctrolyte

Semi-empirical Equation of Limiting Current for CobaltMagnetoelectrodeposition in the Presence Additive Elctrolyte

 

Sudibyo1, A. B. Ismail2 and N. Aziz1*

 

1School of Chemical Engineering, Universiti SainsMalaysia

2School of Materials and Mineral Resources Engineering,Universiti Sains Malaysia

Engineering campus, 14300 Nibong Tebal, Seberang PeraiSelatan, Pulau Pinang, Malaysia

*Corresponding author, Tel: +604 5996457; Fax: +6045941013; e-mail: chnaziz@eng.usm.my

 

 

Abstract

One of the methods availableto solve a roughening problem in electrodeposition is magnetoelectrodeposition(MED). This work is coined to focus on the limiting current under a magneticfield effects (MFE) on an electrodeposition of cobalt in the presence boricacid as additives electrolyte. The limiting current isvery important because it will affect the optimum mass transport achieved inthe elecrodeposition process. Here, the MFEon limiting current electrodeposition are investigated in terms of variationsin the electrode area (A), the concentration of the electro active species (C), the diffusion coefficient of theelectroactive species (D), thekinematic viscosity of the electrolyte (v),magnetic strength (B) and the number ofelectrons involved in the redox process (n). We concluded thatthe semi–empirical equation of limiting current under a magnetic field forcobalt MED is: 

iB =K C1.297A0.748Dv-0.664B0.336n1.385, where K is6.7 × 107 mA mol-1.297cm1.252S-0.664T-0.336s.

 

Keywords: magnetoelectrodeposition; semi–empiricalequation; limiting current; additive; cobalt electrodeposition

 

Plate 1: Experimental setupfor development of semi-empirical equation of iB

 

 

 

 

 

Plate 2: Three-electrodeelectrochemical cell in cavity of electromagnet poles

 

 

 

 

Acknowledgment

 

Financial supports from Ministry of HigherEducation Malaysia through FRGS grant No. 607113 is greatly acknowledged.

 

References:

1.      KrauseA, Uhlemann M, Gebert A, L. Schultz L (2004) Electrochim Acta 49:4127

2.      Santos JS, Matos R, Trivinho-Strixino F,Pereira EC (2007) Electrochim Acta 53: 644

3.      Matsushima JT, Trivinho-Strixino F,Pereira EC (2006) Electrochim Acta 51: 1960

4.      Nakano H, Nakahara K, Kawano S, Oue S, Akiyama T and Fukushima H ,( 2002) J  Appl  

          electrochem  32: 43

5.      Ackland GJ, Tweedie ES (2007) Microscopicmodel of diffusion limited aggregation and

         electrodeposition in the presence oflevelling molecules. School of Physics, the University of

          Edinburgh, Scotland

6.      Ni Mhiochain TR, Hinds G, Martin A, ChangE, Lai A, Costiner L, Coey JMD (2004) Electrochim

         Acta 49: 4813

7.      Bund A, Koehler S, Kuehnlein HH, Plieth W(2003) Electrochim Acta 49: 147

8.     Mogi I, Kamiko M(1996) J Cryst Growth 166: 276

9.     MogiI, (1996) Physica B 216: 396

10.    Coey JMD, Hinds G (2001) J Alloys Compd 326: 238

11.    Fahidy TZ (2001) Prog Surf Sci 68: 155

12.    Nikolai SP,Polina MS, Inoue M (2004) J Magn Magn Mater 272: 2448

13.    Mansur Filho JC, Silva AG, Carvalho ATG,Martins ML (2005) Physica A 350: 393

14.    Legeai S, Chatelut M, Vittori O, Chopart JP,Aaboubi O (2004)  Electrochim Acta 50: 51

15.    Mollet L,Dumargue P, Daguenet P, Bodiot D (1974) Electrochim Acta 19: 841

16.    Aogaki R,Fueki K, Mukaibo T (1976) Denki Kagaku 44: 89

17.    Chopart JP,Douglade J, Fricoteaux P, Olivier A (1991) Electrochim Acta 36: 459

18.    Aaboubi O,Chopart JP, Olivier A, Gabrielli C, Tribollet B (1990) J. Electrochem. Soc.137: 1796

19.    Leventis N,Chen M, Gao X, Canalas M, Zhang P (1998) J Phys Chem B 102: 3512

20.    Leventis N,Gao X (1999) J Phys Chem B 103: 5832

21.    Aaboubi O,Los P, Amblard J, Chopart JP, Olivier A (2002) Energy Convers Manage 43: 37

22.    FricoteauxP, Jonvel B, Chopart JP (2003) J Phys Chem B 107: 9459.

23.    Legeai S,Chatelut M, Vittori O, Chopart JP, Aaboubi O (2004) Electrochim Acta 50: 51

24.    Rabah KL,Chopart JP, Schoelrb H, Saulnier S, Aaboubi O, Uhlemann M, Elmi D, Amblard

          J(2004) J Electroanal Chem 571:  85

25.   Sudibyo, Ismail AB, Uzir MH, Idris MN,Aziz N (2009) J REINTEK 4: 80

26.    Hinds G, Spada FE, Coey JMD, Ni Mhiocha´inTR, Lyons MEG (2001)  J Phys Chem B 105: 9847

27.    James AM(1984) Electrochemistry Dictionary. John Wiley & Sons, New York

 

 

 

Semi-empirical Equation of Limiting Current for Tin Magnetoelectrodeposition in the Presence Additive Elctrolyte  

Semi-empirical Equation of Limiting Current for Tin Magnetoelectrodeposition in the Presence Additive Elctrolyte  

 

Sudibyo1, A. B. Ismail2, and N. Aziz1*

 

1School of Chemical Engineering, Universiti Sains Malaysia

2School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia

Engineering campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia

*Phone: +6(04)599 6457 Fax. +6(04) 5941013, Email: chnaziz@eng.usm.my

 

Abstract

Tinmagnetoelectrodeposition (MED) is one of methods that can obtain moreuniform and compact structure of tin elctrodeposits. This newtechnology on tin electropositions process can be an alternativeprocess to produce nanomaterials and new generations of electronicsdevice. Measuring the limiting current is important in order to knowMFE on the mass transport phenomena of electrodeposition process. MFEon tin electrodeposition were investigated in terms of variations inthe effect of magnetic strength (B), the electrode area (A), theconcentration of the electro active species (C), the diffusioncoefficient of the electro active species (D), and the kinematicviscosity of the electrolyte (v) and the number of electrons of theredox process (n). MFE with flux density up to 0.3 T on tinelectrodeposition from sulphate electrolyte has been investigated. Weconcluded that the limiting current under magnetic field on tinelectrodepositing, iB = K C1.272A0.746 Dv-0.67B0.334n1.382 where K is

3.07 × 107  mA mol-1.272cm1.254S-0.67T-0.334s.

 

Keywords: Tin deposition; Magnetoelectrodeposition; Limiting current; semi-empirical equation, additive electrolyte

 

 

 Plate 1: Experimental setup for development of semi-empirical equation of iB

 

 

Plate 2: Three-electrode electrochemical cell in cavity of electromagnet poles

 

 

Acknowledgment

Financial supports from Ministry of Higher Education Malaysia through FRGS grant No. 607113 is greatly acknowledged.

 

References:

 

1.    J. Torrent-Burgues, E. Guaus, F. Sanz, J. Appl Electrochem., 32, 225 (2002).

2.    T.R. Ni Mhiochain, G. Hinds, A. Martin, E. Chang, A. Lai, L. Costiner,J.M.D Coey Electrochim. Acta, 49, 4813 (2004).

3.    Matsushima, J.T., Trivinho-Strixino, F., Pereira, E.C., Electrochim. Acta, 51, 1960 (2006).

4.    A. Bund, S Koehler, H. H. Kuehnlein, W. Plieth, Electrochim. Acta, 49, 147 (2003).

5.    T.R. Ni Mhiochain, G. Hinds, A. Martin, E. Chang, A. Lai, L. Costiner, J.M.D. Coey, Electrochim Acta 49, 4813 (2004).

6.    S. Legeai, M. Chatelut, O. Vittori, J.P. Chopart, O. Aaboubi, Electrochim. Acta, 50, 51(2004).

7.    L. Mollet, P. Dumargue, P. Daguenet, D. Bodiot, Electrochim. Acta 19, 841 (1974).

8.    R. Aogaki, K. Fueki, T. Mukaibo, Denki Kagaku, 44, 89 (1976).

9.    J.P. Chopart, J. Douglade, P. Fricoteaux, A. Olivier, Electrochim Acta, 36, 459 (1991).

10.  O.Aaboubi, J.P. Chopart, A. Olivier, C. Gabrielli, B. Tribollet, J. Electrochem. Soc., 137, 1796 (1990).

11.  N. Leventis, M. Chen, X. Gao, M. Canalas, P. Zhang, J. Phys. Chem B., 102, 3512 (1998).

12.  N. Leventis, X. Gao, J. Phys. Chem. B, 103, 5832, (1999).

13.  O. Aaboubi, P. Los, J. Amblard, J. P. Chopart, A. Olivier. Energy Convers. Manage., 43, 37  (2002).

14.  P. Fricoteaux, B. Jonvel, J. P. Chopart, J. Phys. Chem. B, 107, 9459 (2003).

15.  S. Legeai, M. Chatelut, O. Vittori, J. P. Chopart, O. Aaboubi, Electrochim. Acta, 50, 51  (2004).

16.  K. L. Rabah, J. P. Chopart, H. Schoelrb, S. Saulnier, O. Aaboubi, M. Uhlemann, D. Elmi, J. Amblard, J. Electroanal. Chem., 571,  85 (2004).

17. Sudibyo, A. B. Ismail, M. H. Uzir, M. N. Idris, N. Aziz , J. REINTEK, 4, 80 (2009).

18.  G. Hinds, F. E. Spada, J. M. D. Coey, T. R. Ni Mhiocha´in, M. E. G. Lyons,  J. Phys. Chem. B, 105, 9847 (2001).

19. I. Mogi, M. Kamiko, J Cryst Growth, 166, 276  (1996).

20. I. Mogi, Physica B, 216, 396 (1996).

21.  J. M. D. Coey, G. Hinds, J. Alloys Compd., 326, 238 (2001).

22.  T. Z. Fahidy, Prog. Surf. Sci. 68, 155 (2001).

23. S. P. Nikolai, M. S. Polina, M. Inoue, J. Magn. Magn. Mater., 272, 2448 (2004).

24.       J. C. Mansur Filho, A. G. Silva, A. T. G. Carvalho, M. L. Martins, Physica A, 350, 393  (2005).

25.  A. M. James, Electrochemistry Dictionary, John Wiley & Sons, New York (1984).

 

Recent Videos

79 views - 0 comments
80 views - 0 comments
71 views - 0 comments